Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.307
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-34655741

RESUMO

Hypoxia is a frequent stressor in marine environments with multiple adverse effects on marine species. The white shrimp Litopenaeus vannamei withstands hypoxic conditions by activating anaerobic metabolism with tissue-specific changes in glycolytic and gluconeogenic enzymes. In animal cells, glycolytic/gluconeogenic fluxes are highly controlled by the levels of fructose-2,6-bisphosphate (F-2,6-P2), a signal metabolite synthesized and degraded by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFK-2/FBPase-2 has been studied in vertebrates and some invertebrates, but as far as we know, there are no reports on PFK-2/FBPase-2 from crustaceans. In the present work, we obtained cDNA nucleotide sequences corresponding to two mRNAs for PFK-2/FBPase-2 and named them PFKFBP1 (1644 bp) and PFKFBP2 (1566 bp), from the white shrimp L. vannamei. The deduced PFKFBP1 and PFKFBP2 are 547 and 521 amino acids long, respectively. Both proteins share 99.23% of identity, and only differ in 26 additional amino acids present in the kinase domain of the PFKFBP1. The kinase and phosphatase domains are highly conserved in sequence and structure between both isoforms and other proteins from diverse taxa. Total expression of PFKFBP1-2 is tissue-specific, more abundant in gills than in hepatopancreas and undetectable in muscle. Moreover, severe hypoxia (1 mg/L of DO) decreased expression of PFKFBP1-2 in gills while anaerobic glycolysis was induced, as indicated by accumulation of cellular lactate. These results suggest that negative regulation of PFKFBP1-2 at expression level is necessary to set up anaerobic glycolysis in the cells during the response to hypoxia.


Assuntos
Penaeidae/enzimologia , Penaeidae/genética , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Brânquias/metabolismo , Hipóxia/enzimologia , Hipóxia/genética , Ácido Láctico/metabolismo , Modelos Moleculares , Fosfofrutoquinase-2/química , Filogenia , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
2.
Chem Commun (Camb) ; 57(69): 8644-8647, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34369955

RESUMO

Effective monitoring of liver hypoxia status is crucial for the detection and treatment of drug-induced liver injury. Here, a novel photoacoustic and fluorescent dual-modal probe (NO2-CS) was rationally developed and applied to image isoniazid-induced liver hypoxia through detecting the over-expressed nitroreductase.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Corantes Fluorescentes/química , Hipóxia/metabolismo , Fígado/metabolismo , Xantenos/química , Animais , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Feminino , Hipóxia/enzimologia , Isoniazida/farmacologia , Fígado/enzimologia , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Nitrorredutases/metabolismo , Técnicas Fotoacústicas
3.
Pflugers Arch ; 473(8): 1273-1285, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34231059

RESUMO

Myocardial infarction (MI) is one of the leading causes of death worldwide. Prognosis and mortality rate are directly related to infarct size and post-infarction pathological heart remodeling, which can lead to heart failure. Hypoxic MI-affected areas increase the expression of hypoxia-inducible factor (HIF-1), inducing infarct size reduction and improving cardiac function. Hypoxia translocates HIF-1 to the nucleus, activating carbonic anhydrase IX (CAIX) transcription. CAIX regulates myocardial intracellular pH, critical for heart performance. Our objective was to investigate CAIX participation and relation with sodium bicarbonate transporters 1 (NBC1) and HIF-1 in cardiac remodeling after MI. We analyzed this pathway in an "in vivo" rat coronary artery ligation model and isolated cardiomyocytes maintained under hypoxia. Immunohistochemical studies revealed an increase in HIF-1 levels after 2 h of infarction. Similar results were observed in 2-h infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes with a nuclear distribution (confocal microscopy). Immunohistochemical studies showed an increase CAIX in the infarcted area at 2 h, mainly distributed throughout the cell and localized in the plasma membrane at 24 h. Similar results were observed in 2 h in infarcted cardiac tissue (immunoblotting) and in hypoxic cardiomyocytes (confocal microscopy). NBC1 expression increased in cardiac tissue after 2 h of infarction (immunoblotting). CAIX and NBC1 interaction increases in cardiac tissue subjected to MI for 2h when CAIX is present (immunoprecipitation). These results suggest that CAIX interacts with NBC1 in our infarct model as a mechanism to prevent acidic damage in hypoxic tissue, making it a promising therapeutic target.


Assuntos
Anidrase Carbônica IX/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/enzimologia , Infarto do Miocárdio/enzimologia , Simportadores de Sódio-Bicarbonato/metabolismo , Animais , Masculino , Cultura Primária de Células , Ratos Wistar , Remodelação Ventricular
4.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34156474

RESUMO

BACKGROUND: Hypoxia and inflammation are hallmarks of critical illness, related to multiple organ failure. A possible mechanism leading to multiple organ failure is hypoxia- or inflammation-induced down-regulation of the detoxifying glyoxalase system that clears dicarbonyl stress. The dicarbonyl methylglyoxal (MGO) is a highly reactive agent produced by metabolic pathways such as anaerobic glycolysis and gluconeogenesis. MGO leads to protein damage and ultimately multi-organ failure. Whether detoxification of MGO into D-lactate by glyoxalase functions appropriately under conditions of hypoxia and inflammation is largely unknown. We investigated the effect of inflammation and hypoxia on the MGO pathway in humans in vivo. METHODS: After prehydration with glucose 2.5% solution, ten healthy males were exposed to hypoxia (arterial saturation 80-85%) for 3.5 h using an air-tight respiratory helmet, ten males to experimental endotoxemia (LPS 2 ng/kg i.v.), ten males to LPS+hypoxia and ten males to none of these interventions (control group). Serial blood samples were drawn, and glyoxalase-1 mRNA expression, MGO, methylglyoxal-derived hydroimidazolone-1 (MG-H1), D-lactate and L-lactate levels, were measured serially. RESULTS: Glyoxalase-1 mRNA expression decreased in the LPS (ß (95%CI); -0.87 (-1.24; -0.50) and the LPS+hypoxia groups; -0.78 (-1.07; -0.48) (P<0.001). MGO was equal between groups, whereas MG-H1 increased over time in the control group only (P=0.003). D-Lactate was increased in all four groups. L-Lactate was increased in all groups, except in the control group. CONCLUSION: Systemic inflammation downregulates glyoxalase-1 mRNA expression in humans. This is a possible mechanism leading to cell damage and multi-organ failure in critical illness with potential for intervention.


Assuntos
Endotoxemia/enzimologia , Hipóxia/enzimologia , Inflamação/enzimologia , Lactoilglutationa Liase/sangue , Aldeído Pirúvico/sangue , Adolescente , Adulto , Biomarcadores/sangue , Regulação para Baixo , Endotoxemia/sangue , Endotoxemia/genética , Voluntários Saudáveis , Humanos , Hipóxia/sangue , Hipóxia/genética , Inflamação/sangue , Inflamação/genética , Ácido Láctico/sangue , Lactoilglutationa Liase/genética , Masculino , Adulto Jovem
5.
J Biomed Sci ; 28(1): 41, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34082769

RESUMO

Lysine-specific demethylase 1 (LSD1) targets mono- or di-methylated histone H3K4 and H3K9 as well as non-histone substrates and functions in the regulation of gene expression as a transcriptional repressor or activator. This enzyme plays a pivotal role in various physiological processes, including development, differentiation, inflammation, thermogenesis, neuronal and cerebral physiology, and the maintenance of stemness in stem cells. LSD1 also participates in pathological processes, including cancer as the most representative disease. It promotes oncogenesis by facilitating the survival of cancer cells and by generating a pro-cancer microenvironment. In this review, we discuss the role of LSD1 in several aspects of cancer, such as hypoxia, epithelial-to-mesenchymal transition, stemness versus differentiation of cancer stem cells, as well as anti-tumor immunity. Additionally, the current understanding of the involvement of LSD1 in various other pathological processes is discussed.


Assuntos
Histona Desmetilases/genética , Homeostase/genética , Neoplasias/genética , Animais , Diferenciação Celular/genética , Transição Epitelial-Mesenquimal/genética , Histona Desmetilases/imunologia , Histona Desmetilases/metabolismo , Homeostase/imunologia , Humanos , Hipóxia/enzimologia , Hipóxia/genética , Hipóxia/imunologia , Camundongos , Neoplasias/enzimologia , Neoplasias/imunologia , Células-Tronco Neoplásicas/fisiologia , Evasão Tumoral/genética
6.
Cell Death Dis ; 12(7): 630, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145219

RESUMO

Mitophagy alleviates neuronal damage after cerebral ischemia by selectively removing dysfunctional mitochondria. Phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy is the most well-known type of mitophagy. However, little is known about the role of PINK1/Parkin-mediated mitophagy in ischemic tolerance induced by hypoxic postconditioning (HPC) with 8% O2 against transient global cerebral ischemia (tGCI). Hence, we aimed to test the hypothesis that HPC-mediated PINK1/Parkin-induced mitochondrial ubiquitination and promotes mitophagy, thus exerting neuroprotection in the hippocampal CA1 subregion against tGCI. We found that mitochondrial clearance was disturbed at the late phase of reperfusion after tGCI, which was reversed by HPC, as evidenced by the reduction of the translocase of outer mitochondrial membrane 20 homologs (TOMM20), translocase of inner mitochondrial membrane 23 (TIMM23) and heat shock protein 60 (HSP60) in CA1 after HPC. In addition, HPC further increased the ratio of LC3II/I in mitochondrial fraction and promoted the formation of mitophagosomes in CA1 neurons after tGCI. The administration of lysosome inhibitor chloroquine (CQ) intraperitoneally or mitophagy inhibitor (Mdivi-1) intracerebroventricularly abrogated HPC-induced mitochondrial turnover and neuroprotection in CA1 after tGCI. We also found that HPC activated PINK1/Parkin pathway after tGCI, as shown by the augment of mitochondrial PINK1 and Parkin and the promotion of mitochondrial ubiquitination in CA1. In addition, PINK1 or Parkin knockdown with small-interfering RNA (siRNA) suppressed the activation of PINK1/Parkin pathway and hampered mitochondrial clearance and attenuated neuroprotection induced by HPC, whereas PINK1 overexpression promoted PINK1/Parkin-mediated mitophagy and ameliorated neuronal damage in CA1 after tGCI. Taken together, the new finding in this study is that HPC-induced neuroprotection against tGCI through promoting mitophagy mediated by PINK1/Parkin-dependent pathway.


Assuntos
Região CA1 Hipocampal/enzimologia , Hipóxia/enzimologia , Ataque Isquêmico Transitório/enzimologia , Mitocôndrias/enzimologia , Mitofagia , Neurônios/enzimologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Região CA1 Hipocampal/ultraestrutura , Modelos Animais de Doenças , Hipóxia/genética , Hipóxia/patologia , Ataque Isquêmico Transitório/genética , Ataque Isquêmico Transitório/patologia , Masculino , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Neurônios/ultraestrutura , Proteínas Quinases/genética , Transporte Proteico , Ratos Wistar , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
7.
Curr Drug Metab ; 22(9): 709-725, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33992050

RESUMO

BACKGROUND: Hypoxia has a negative effect on the cardiovascular system, nervous system, and metabolism, which contributes to potential changes in drug absorption, distribution, metabolism, and excretion (ADME). However, hypoxia can also alter the expression of microRNA (miRNA), thereby regulating drug-metabolizing enzymes, transporters, and ADME genes, such as hypoxia-inducible factor, inflammatory cytokine, nuclear receptor, etc. Therefore, it is crucial to study the role of miRNA in the regulation of drug-metabolizing enzymes and transporters under hypoxia. METHODS: A systematic review of published studies was carried out to investigate the role of miRNA in the regulation of drug-metabolizing enzymes and transporters under hypoxia. Data and information on expression changes in miRNA, drug-metabolizing enzymes, and transporters under hypoxia were analyzed and summarized. RESULTS: Hypoxia can up or down-regulate the expression of miRNA. The effect of hypoxia on Cytochrome P450 (CYP450) is still a subject of debate. The widespread belief is that hypoxia decreased the activity and expression of CYP1A1, CYP1A2, CYP2E1, and CYP3A1 and increased those of CYP3A6 and CYP2D1 in rats. Hypoxia increased the expression of a multidrug resistance-associated protein, breast cancer resistance protein, peptide transporter, organic cation transporter, and organic anion transporter. miRNA negatively regulated the expression of drugmetabolizing enzymes and transporters. CONCLUSION: The findings of this review indicated that miRNA plays a key role in the expression changes of drugmetabolizing enzymes and transporters under hypoxia.


Assuntos
Biotransformação , Regulação da Expressão Gênica , Hipóxia , MicroRNAs/metabolismo , Transporte Biológico Ativo/genética , Humanos , Hipóxia/enzimologia , Hipóxia/metabolismo , Inativação Metabólica/genética
8.
Physiol Rep ; 9(9): e14854, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33991451

RESUMO

SARS-CoV-2 uptake by lung epithelial cells is a critical step in the pathogenesis of COVID-19. Viral entry is dependent on the binding of the viral spike protein to the angiotensin converting enzyme II protein (ACE2) on the host cell surface, followed by proteolytic cleavage by a host serine protease such as TMPRSS2. Infection of alveolar epithelial cells (AEC) in the distal lung is a key feature in progression to the acute respiratory distress syndrome (ARDS). We hypothesized that AEC expression of ACE2 is induced by hypoxia. In a murine model of hypoxic stress (12% FiO2), the total lung Ace2 mRNA and protein expression was significantly increased after 24 hours in hypoxia compared to normoxia (21% FiO2). In experiments with primary murine type II AEC, we found that exposure to hypoxia either in vivo (prior to isolation) or in vitro resulted in greatly increased AEC expression of both Ace2 (mRNA and protein) and of Tmprss2. However, when isolated type II AEC were maintained in culture over 5 days, with loss of type II cell characteristics and induction of type I cell features, Ace2 expression was greatly reduced, suggesting that this expression was a feature of only this subset of AEC. Finally, in primary human small airway epithelial cells (SAEC), ACE2 mRNA and protein expression were also induced by hypoxia, as was binding to purified spike protein. Hypoxia-induced increase in ACE2 expression in type II AEC may provide an explanation of the extended temporal course of human patients who develop ARDS in COVID-19.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Células Epiteliais Alveolares/enzimologia , Enzima de Conversão de Angiotensina 2/biossíntese , COVID-19/enzimologia , Regulação Enzimológica da Expressão Gênica , Hipóxia/enzimologia , Lesão Pulmonar Aguda/genética , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Células Cultivadas , Feminino , Humanos , Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Biosci Rep ; 41(6)2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33973628

RESUMO

Carbohydrate metabolism in heart failure shares similarities to that following hypoxic exposure, and is thought to maintain energy homoeostasis in the face of reduced O2 availability. As part of these in vivo adaptations during sustained hypoxia, the heart up-regulates and maintains a high glycolytic flux, but the underlying mechanism is still elusive. We followed the cardiac glycolytic responses to a chronic hypoxic (CH) intervention using [5-3H]-glucose labelling in combination with detailed and extensive enzymatic and metabolomic approaches to provide evidence of the underlying mechanism that allows heart survivability. Following 3 weeks of in vivo hypoxia (11% oxygen), murine hearts were isolated and perfused in a retrograde mode with function measured via an intraventricular balloon and glycolytic flux quantified using [5-3H]-glucose labelling. At the end of perfusion, hearts were flash-frozen and central carbon intermediates determined via liquid chromatography tandem mass spectrometry (LC-MS/MS). The maximal activity of glycolytic enzymes considered rate-limiting was assessed enzymatically, and protein abundance was determined using Western blotting. Relative to normoxic hearts, CH increased ex vivo cardiac glycolytic flux 1.7-fold with no effect on cardiac function. CH up-regulated cardiac pyruvate kinase (PK) flux 3.1-fold and cardiac pyruvate kinase muscle isoenzyme M2 (PKM2) protein content 1.4-fold compared with normoxic hearts. CH also augmented cardiac pentose phosphate pathway (PPP) flux, reflected by higher ribose-5-phosphate (R5P) content. These findings support an increase in the covalent (protein expression) and allosteric (flux) control of PKM2 as being central to the sustained up-regulation of the glycolytic flux in the chronically hypoxic heart.


Assuntos
Glicólise , Hipóxia/enzimologia , Miócitos Cardíacos/enzimologia , Piruvato Quinase/metabolismo , Regulação Alostérica , Animais , Doença Crônica , Modelos Animais de Doenças , Hipóxia/patologia , Preparação de Coração Isolado , Masculino , Metaboloma , Camundongos , Miócitos Cardíacos/patologia , Via de Pentose Fosfato , Ribosemonofosfatos/metabolismo , Transdução de Sinais
10.
Cell Mol Gastroenterol Hepatol ; 12(2): 585-597, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33798787

RESUMO

BACKGROUND & AIMS: Fatty liver or nonalcoholic fatty liver disease (NAFLD) is the most common liver disease associated with comorbidities such as insulin resistance and cardiovascular and metabolic diseases. Chronic activation of hypoxic signaling, in particular, hypoxia-inducible factor (HIF)2α, promotes NAFLD progression by repressing genes involved in fatty acid ß-oxidation through unclear mechanisms. Therefore, we assessed the precise mechanism by which HIF2α promotes fatty liver and its physiological relevance in metabolic homeostasis. METHODS: Primary hepatocytes from VHL (VhlΔHep) and PPARα (Ppara-null) knockout mice that were loaded with fatty acids, murine dietary protocols to induce hepatic steatosis, and fasting-refeeding dietary regimen approaches were used to test our hypothesis. RESULTS: Inhibiting autophagy using chloroquine did not decrease lipid contents in VhlΔHep primary hepatocytes. Inhibition of ERK using MEK inhibitor decreased lipid contents in primary hepatocytes from a genetic model of constitutive HIF activation and primary hepatocytes loaded with free fatty acids. Moreover, MEK-ERK inhibition potentiated ligand-dependent activation of PPARα. We also show that MEK-ERK inhibition improved diet-induced hepatic steatosis, which is associated with the induction of PPARα target genes. During fasting, fatty acid ß-oxidation is induced by PPARα, and refeeding inhibits ß-oxidation. Our data show that ERK is involved in the post-prandial repression of hepatic PPARα signaling. CONCLUSIONS: Overall, our results demonstrate that ERK activated by hypoxia signaling plays a crucial role in fatty acid ß-oxidation genes by repressing hepatocyte PPARα signaling.


Assuntos
Fígado Gorduroso/patologia , Hipóxia/enzimologia , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases , PPAR alfa/metabolismo , Animais , Autofagia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Comportamento Alimentar , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Metabolismo dos Lipídeos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Oxirredução , Período Pós-Prandial , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919829

RESUMO

The HIF prolyl 4-hydroxylases (HIF-P4H) control hypoxia-inducible factor (HIF), a powerful mechanism regulating cellular adaptation to decreased oxygenation. The gastrointestinal epithelium subsists in "physiological hypoxia" and should therefore have an especially well-designed control over this adaptation. Thus, we assessed the absolute mRNA expression levels of the HIF pathway components, Hif1a, HIF2a, Hif-p4h-1, 2 and 3 and factor inhibiting HIF (Fih1) in murine jejunum, caecum and colon epithelium using droplet digital PCR. We found a higher expression of all these genes towards the distal end of the gastrointestinal tract. We detected mRNA for Hif-p4h-1, 2 and 3 in all parts of the gastrointestinal tract. Hif-p4h-2 had significantly higher expression levels compared to Hif-p4h-1 and 3 in colon and caecum epithelium. To test the roles each HIF-P4H isoform plays in the gut epithelium, we measured the gene expression of classical HIF target genes in Hif-p4h-1-/-, Hif-p4h-2 hypomorph and Hif-p4h-3-/- mice. Only Hif-p4h-2 hypomorphism led to an upregulation of HIF target genes, confirming a predominant role of HIF-P4H-2. However, the abundance of Hif-p4h-1 and 3 expression in the gastrointestinal epithelium implies that these isoforms may have specific functions as well. Thus, the development of selective inhibitors might be useful for diverging therapeutic needs.


Assuntos
Regulação Enzimológica da Expressão Gênica , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Hipóxia/enzimologia , Hipóxia/genética , Mucosa Intestinal/enzimologia , Envelhecimento/metabolismo , Animais , Ceco/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Isoenzimas/metabolismo , Jejuno/metabolismo , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
12.
J Vasc Res ; 58(4): 237-251, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910208

RESUMO

INTRODUCTION: Pulmonary hypertension is characterized by vasoconstriction and remodeling of pulmonary arteries, leading to right ventricular hypertrophy and failure. We have previously found upregulation of transglutaminase 2 (TG2) in the right ventricle of chronic hypoxic rats. The hypothesis of the present study was that treatment with the transglutaminase inhibitor, cystamine, would inhibit the development of pulmonary arterial remodeling, pulmonary hypertension, and right ventricular hypertrophy. METHODS: Effect of cystamine on transamidase activity was investigated in tissue homogenates. Wistar rats were exposed to chronic hypoxia and treated with vehicle, cystamine (40 mg/kg/day in mini-osmotic pumps), sildenafil (25 mg/kg/day), or the combination for 2 weeks. RESULTS: Cystamine concentration-dependently inhibited TG2 transamidase activity in liver and lung homogenates. In contrast to cystamine, sildenafil reduced right ventricular systolic pressure and hypertrophy and decreased pulmonary vascular resistance and muscularization in chronic hypoxic rats. Fibrosis in the lung tissue decreased in chronic hypoxic rats treated with cystamine. TG2 expression was similar in the right ventricle and lung tissue of drug and vehicle-treated hypoxic rats. DISCUSSION/CONCLUSIONS: Cystamine inhibited TG2 transamidase activity, but cystamine failed to prevent pulmonary hypertension, right ventricular hypertrophy, and pulmonary arterial muscularization in the chronic hypoxic rat.


Assuntos
Pressão Arterial/efeitos dos fármacos , Cistamina/farmacologia , Inibidores Enzimáticos/farmacologia , Hipertensão Pulmonar/prevenção & controle , Hipóxia/tratamento farmacológico , Proteína 2 Glutamina gama-Glutamiltransferase/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/prevenção & controle , Hipóxia/complicações , Hipóxia/enzimologia , Hipóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Proteína 2 Glutamina gama-Glutamiltransferase/metabolismo , Artéria Pulmonar/enzimologia , Artéria Pulmonar/fisiopatologia , Fibrose Pulmonar/enzimologia , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/fisiopatologia , Fibrose Pulmonar/prevenção & controle , Ratos Wistar , Remodelação Vascular/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos
13.
Mol Cell ; 81(9): 2041-2052.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823141

RESUMO

Cellular senescence is a state of stable proliferative arrest triggered by damaging signals. Senescent cells persist during aging and promote age-related pathologies via the pro-inflammatory senescence-associated secretory phenotype (SASP), whose regulation depends on environmental factors. In vivo, a major environmental variable is oxygenation, which varies among and within tissues. Here, we demonstrate that senescent cells express lower levels of detrimental pro-inflammatory SASP factors in physiologically hypoxic environments, as measured in culture and in tissues. Mechanistically, exposure of senescent cells to low-oxygen conditions leads to AMPK activation and AMPK-mediated suppression of the mTOR-NF-κB signaling loop. Finally, we demonstrate that treatment with hypoxia-mimetic compounds reduces SASP in cells and tissues and improves strength in chemotherapy-treated and aged mice. Our findings highlight the importance of oxygen as a determinant for pro-inflammatory SASP expression and offer a potential new strategy to reduce detrimental paracrine effects of senescent cells.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proliferação de Células , Senescência Celular , Hipóxia/enzimologia , Serina-Treonina Quinases TOR/metabolismo , Fatores Etários , Animais , Antibióticos Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Humanos , Hidroxibenzoatos/farmacologia , Hipóxia/patologia , Hipóxia/fisiopatologia , Mediadores da Inflamação/metabolismo , Isoquinolinas/farmacologia , Camundongos Endogâmicos C57BL , Força Muscular , NF-kappa B/metabolismo , Comunicação Parácrina , Fenótipo , Transdução de Sinais
14.
Respir Physiol Neurobiol ; 285: 103598, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33326865

RESUMO

Short-term hypoxic states can influence the health and life activities of lowlanders who travel shortly to high altitudes, in transitory situations, such as surgical ischemia-reperfusion (to one or several organs), and in some sporting activities, such as parachuting and extreme skiing, mountain rescue teams, regular commercial flight crews, in which the subject may not even notice the hypoxia. NO is an integral part of the human physiological response to hypoxia. Until recently, the urea cycle (UC) was only considered as an important mechanism for neutralizing ammonia. We are the first to reveal an interrelation in hypoxic states between the activities of NO-synthase and UC enzymes in male rats' liver, kidney and brain. In the presented work, we have shown that during short-term intermittent hypobaric hypoxia (IHH) all enzymes of UC play an important role in the maintenance of NO quantity. The results allow thinking that kidney and brain argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) and liver ASS and ASL can be different isoenzymes. It is worth mentioning that the results have revealed new sides of l-arginine metabolism in a hypoxic state in male rats.


Assuntos
Encéfalo/enzimologia , Hipóxia/enzimologia , Rim/enzimologia , Fígado/enzimologia , Óxido Nítrico/metabolismo , Ureia/metabolismo , Animais , Argininossuccinato Liase/metabolismo , Argininossuccinato Sintase/metabolismo , Modelos Animais de Doenças , Masculino , Redes e Vias Metabólicas/fisiologia , Ratos , Ratos Wistar
15.
Am J Physiol Regul Integr Comp Physiol ; 320(1): R1-R18, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112654

RESUMO

Changes in vascular contractility are among the most important physiological effects of acute and chronic fetal hypoxia. Given the essential role of myosin light-chain kinase (MLCK) in smooth muscle contractility and its heterogeneous distribution, this study explores the hypothesis that subcellular changes in MLCK distribution contribute to hypoxic modulation of fetal carotid artery contractility. Relative to common carotid arteries from normoxic term fetal lambs (FN), carotids from fetal lambs gestated at high altitude (3,802 m) (FH) exhibited depressed contractility without changes in MLCK mRNA or protein abundance. Patterns of confocal colocalization of MLCK with α-actin and 20-kDa regulatory myosin light chain (MLC20) enabled calculation of subcellular MLCK fractions: 1) colocalized with the contractile apparatus, 2) colocalized with α-actin distant from the contractile apparatus, and 3) not colocalized with α-actin. Chronic hypoxia did not affect MLCK abundance in the contractile fraction, despite a concurrent decrease in contractility. Organ culture for 72 h under 1% O2 decreased total MLCK abundance in FN and FH carotid arteries, but decreased the contractile MLCK abundance only in FH carotid arteries. Correspondingly, culture under 1% O2 depressed contractility more in FH than FN carotid arteries. In addition, hypoxia appeared to attenuate ubiquitin-independent proteasomal degradation of MLCK, as reported for other proteins. In aggregate, these results demonstrate that the combination of chronic hypoxia followed by hypoxic culture can induce MLCK translocation among at least three subcellular fractions with possible influences on contractility, indicating that changes in MLCK distribution are a significant component of fetal vascular responses to hypoxia.


Assuntos
Artérias Carótidas/enzimologia , Feto/irrigação sanguínea , Hipóxia/enzimologia , Quinase de Cadeia Leve de Miosina/metabolismo , Vasoconstrição , Altitude , Animais , Artérias Carótidas/fisiopatologia , Hipóxia Celular , Estabilidade Enzimática , Feminino , Idade Gestacional , Hipóxia/genética , Hipóxia/fisiopatologia , Quinase de Cadeia Leve de Miosina/genética , Técnicas de Cultura de Órgãos , Gravidez , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Carneiro Doméstico , Ubiquitinação
16.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R317-R330, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296277

RESUMO

Obstructive sleep apnea (OSA) is a highly prevalent sleep disorder that is associated with many cardiovascular complications. Similar to OSA, chronic intermittent hypoxia (CIH) (a model for OSA) leads to oxidative stress and impairs baroreflex control of the heart rate (HR) in rodents. The baroreflex arc includes the aortic depressor nerve (ADN), vagal efferent, and central neurons. In this study, we used mice as a model to examine the effects of CIH on baroreflex sensitivity, aortic baroreceptor afferents, and central and vagal efferent components of the baroreflex circuitry. Furthermore, we tested whether human Cu/Zn Superoxide Dismutase (SOD1) overexpression in transgenic mice offers protection against CIH-induced deficit of the baroreflex arc. Wild-type C57BL/6J and SOD1 mice were exposed to room air (RA) or CIH and were then anesthetized, ventilated, and catheterized for measurement of mean arterial pressure (MAP) and HR. Compared with wild-type RA control, CIH impaired baroreflex sensitivity but increased maximum baroreceptor gain and bradycardic response to vagal efferent stimulation. Additionally, CIH reduced the bradycardic response to ADN stimulation, indicating a diminished central regulation of bradycardia. Interestingly, SOD1 overexpression prevented CIH-induced attenuation of HR responses to ADN stimulation and preserved HR responses to vagal efferent stimulation in transgenic mice. We suggest that CIH decreased central mediation of the baroreflex and SOD1 overexpression may prevent the CIH-induced central deficit.


Assuntos
Barorreflexo , Bradicardia/prevenção & controle , Encéfalo/enzimologia , Sistema Cardiovascular/inervação , Frequência Cardíaca , Pressorreceptores/fisiopatologia , Superóxido Dismutase-1/metabolismo , Nervo Vago/fisiopatologia , Animais , Pressão Arterial , Bradicardia/enzimologia , Bradicardia/etiologia , Bradicardia/fisiopatologia , Encéfalo/fisiopatologia , Doença Crônica , Modelos Animais de Doenças , Estimulação Elétrica , Humanos , Hipóxia/complicações , Hipóxia/enzimologia , Hipóxia/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Superóxido Dismutase-1/genética , Regulação para Cima
17.
Physiol Res ; 69(6): 933-945, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33129243

RESUMO

The purpose of this review is to analyze the involvement of protein kinases in the cardioprotective mechanism induced by chronic hypoxia. It has been reported that chronic intermittent hypoxia contributes to increased expression of the following kinases in the myocardium: PKCdelta, PKCalpha, p-PKCepsilon, p-PKCalpha, AMPK, p-AMPK, CaMKII, p-ERK1/2, p-Akt, PI3-kinase, p-p38, HK-1, and HK-2; whereas, chronic normobaric hypoxia promotes increased expression of the following kinases in the myocardium: PKCepsilon, PKCbetaII, PKCeta, CaMKII, p-ERK1/2, p-Akt, p-p38, HK-1, and HK-2. However, CNH does not promote enhanced expression of the AMPK and JNK kinases. Adaptation to hypoxia enhances HK-2 association with mitochondria and causes translocation of PKCdelta, PKCbetaII, and PKCeta to the mitochondria. It has been shown that PKCdelta, PKCepsilon, ERK1/2, and MEK1/2 are involved in the cardioprotective effect of chronic hypoxia. The role of other kinases in the cardioprotective effect of adaptation to hypoxia requires further research.


Assuntos
Cardiotônicos/farmacologia , Cardiopatias/enzimologia , Hipóxia/enzimologia , Proteínas Quinases/metabolismo , Animais , Doença Crônica , Cardiopatias/etiologia , Cardiopatias/prevenção & controle , Humanos
18.
Invest Ophthalmol Vis Sci ; 61(13): 13, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33156340

RESUMO

Purpose: Activation of proteolytic enzymes, calpains and caspases, have been observed in many models of retinal disease. We previously demonstrated calpain activation in monkey retinal explants cultured under hypoxia. However, cellular responses are often species-specific. The purpose of the present study was to determine whether calpains or caspase-3 was involved in retinal ganglion cell (RGC) damage caused by hypoxia/reoxygenation in human retinal explants. The explant model was improved by use of an oxygen-controlled chamber. Methods: Human and monkey retinal explants were cultured under hypoxic conditions in an oxygen-controlled chamber and then reoxygenated. Calpain inhibitor SNJ-1945 was maintained throughout the culture period. Immunohistochemistry and immunoblotting were performed for calpains 1 and 2, calpastatin, α-spectrin, calpain-specific α-spectrin breakdown product at 150 kDa (SBDP150), caspase-3, and apoptosis-inducing factor (AIF). Propidium iodide (PI) staining measured membrane disruption, and TUNEL staining detected DNA fragmentation. Results: Activation of calpains in nerve fibers and increases of PI-positive RGCs were observed in retinal explants incubated for 16-hour hypoxia/8-hour reoxygenation. Except for autolysis of calpain 2, SNJ-1945 ameliorated these changes. In longer incubations under 24-hour hypoxia/16-hour reoxygenation, TUNEL-positive cells appeared, although activated caspase-3 and truncated AIF were not observed. DNA fragmentation was inhibited by SNJ-1945. Conclusions: An improved human retinal explant model showed that calpains, not caspase-3, were involved in cell damage induced by hypoxia/reoxygenation. This finding could be relevant for patient treatment with a calpain inhibitor if calpain activation is documented in human retinal ischemic diseases.


Assuntos
Calpaína/metabolismo , Caspase 3/metabolismo , Citosol/enzimologia , Hipóxia/enzimologia , Doenças Retinianas/enzimologia , Células Ganglionares da Retina/enzimologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Calpaína/antagonistas & inibidores , Carbamatos/farmacologia , Células Cultivadas , Criança , Fragmentação do DNA/efeitos dos fármacos , Ativação Enzimática , Humanos , Hipóxia/patologia , Immunoblotting , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Macaca mulatta , Pessoa de Meia-Idade , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia
19.
Biomed Res Int ; 2020: 2054293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195689

RESUMO

BACKGROUND: The aim of this study was to research the effects of glutamine synthetase (GS) and glutamate aspartate transporter (GLAST) in rat Müller cells and the effects of an adenosine A2AR antagonist (SCH 442416) on GS and GLAST in hypoxia both in vivo and in vitro. METHODS: This study used RT-PCR and Western blotting to quantify the expressions of GS and GLAST under different hypoxic conditions as well as the expressions of GS and GLAST at different drug concentrations. A cell viability assay was used to assess drug toxicity. RESULTS: mRNA and protein expression of GS and GLAST in hypoxia Group 24 h was significantly increased. mRNA and protein expressions of GS and GLAST both increased in Group 1 µM SCH 442416 compared with other groups. One micromolar SCH 442416 could upregulate GS and GLAST's activity in hypoxia both in vivo and in vitro. CONCLUSIONS: Hypoxia activates GS and GLAST in rat retinal Müller cells in a short time in vitro. (2) A2AR antagonists upregulate the activity of GS and GLAST in hypoxia both in vivo and in vitro.


Assuntos
Antagonistas do Receptor A2 de Adenosina/farmacologia , Sistema X-AG de Transporte de Aminoácidos/genética , Glutamato-Amônia Ligase/genética , Hipóxia/enzimologia , Hipóxia/genética , Regulação para Cima/efeitos dos fármacos , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glutamato-Amônia Ligase/metabolismo , Pirazóis/farmacologia , Pirazóis/toxicidade , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Ratos Sprague-Dawley
20.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202984

RESUMO

One of the consequences of high altitude (hypobaric hypoxia) exposure is the development of right ventricular hypertrophy (RVH). One particular type of exposure is long-term chronic intermittent hypobaric hypoxia (CIH); the molecular alterations in RVH in this particular condition are less known. Studies show an important role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex-induced oxidative stress and protein kinase activation in different models of cardiac hypertrophy. The aim was to determine the oxidative level, NADPH oxidase expression and MAPK activation in rats with RVH induced by CIH. Male Wistar rats were randomly subjected to CIH (2 days hypoxia/2 days normoxia; n = 10) and normoxia (NX; n = 10) for 30 days. Hypoxia was simulated with a hypobaric chamber. Measurements in the RV included the following: hypertrophy, Nox2, Nox4, p22phox, LOX-1 and HIF-1α expression, lipid peroxidation and H2O2 concentration, and p38α and Akt activation. All CIH rats developed RVH and showed an upregulation of LOX-1, Nox2 and p22phox and an increase in lipid peroxidation, HIF-1α stabilization and p38α activation. Rats with long-term CIH-induced RVH clearly showed Nox2, p22phox and LOX-1 upregulation and increased lipid peroxidation, HIF-1α stabilization and p38α activation. Therefore, these molecules may be considered new targets in CIH-induced RVH.


Assuntos
Regulação Enzimológica da Expressão Gênica , Hipertrofia Ventricular Direita/enzimologia , Hipóxia/enzimologia , Sistema de Sinalização das MAP Quinases , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , NADPH Oxidase 2/biossíntese , Regulação para Cima , Animais , Doença Crônica , Modelos Animais de Doenças , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/patologia , Hipóxia/complicações , Hipóxia/patologia , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...